Synthesis and structure of 6-chloro-2,3-trimethylene-4-phenylquinoline

I. I. Ponomarev, O. V. Shishkin,* S. V. Lindeman, and Yu. V. Volkova

A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 ul. Vavilova, 117813 Moscow, Russian Federation.
Fax: 007 (095) 135 5085. E-mail: serg@xray.ineos.ac.ru

An X-ray structural investigation of 6-chloro-2,3-trimethylene-4-phenylquinoline obtained by the reaction of 2-amino-5-chlorobenzophenone with cyclopentanone was carried out. At 20 °C, a = 23.750, b = 9.242, c = 14.018 Å, $\beta = 112.68$ °, space group C2/c, Z = 8, 2647 reflections, R = 0.047. The five-membered ring has an envelope conformation. Conjugation between the quinoline fragment and the phenyl substituent is significantly distorted due to the rotation of the latter by -62.9°.

Key words: 6-chloro-2,3-trimethylene-4-phenylquinoline, X-ray structural analysis, molecular structure.

In the last few years, the chemistry of heterocyclic polymers, which possess non-linear optical properties (NLO), has rapidly progressed. 1-3 Highly fused heterocyclic systems, which, in spite of their high values of the par ineter χ^3 , are strongly colored compounds and cannot be used in practice for optical devices, are of special interest. It this connection, it is necessary to use the Langmuir-Blodgett procedure for the preparation of NLO films4 or to "dilute" a heterocyclic system with cycloaliphatic fragments, which are more transparent in the visible region. In this regard, the reaction of o-aminobenzophenones with cycloaliphatic ketones found by us⁵ is of significant interest and allows one to establish a correlation between the non-linear optical properties and the chemical composition and structures of model compounds. To extend our knowledge about the influence of composition and molecular structure on the NLO properties of a system, we have studied the reaction of 2-amino-5-cholorobenzophenone with cyclopentanone. As a result, 6-chloro-2,3-trimethylene-4-phenylquinoline (1) has been obtained, and X-ray structural analysis of this compound has been carried out. The reaction was carried out in triphenylphosphate (TPP) at 140 °C for 4 h.

The X-ray structural analysis of compound 1 (Fig. 1, Tables 1–3) showed that the quinoline fragment of the molecule is planar. The five-membered ring has an envelope conformation. The C(9) atom is deflected by 0.21 Å from the least-square plane of the other atoms of the cycle. Non-valence interactions of the hydrogen atoms in the *ortho*-positions of the phenyl substituents with the hydrogen atoms at the C(4) and C(8) atoms (shortened intramolecular contact H(4)...C(14) 2.67(1) Å, the sum of van der Waals radii 2.78 Å)⁶ result in rotation of the aromatic cycle by -62.9(3)° angle with respect to the quinoline fragment. The non-equivalence of these interactions for the two *ortho*-hydrogen atoms (interaction with the hydrogen atoms of

Fig. 1. Structure of molecule 1.

Table 1. Bond lengths (d) in structure 1

Bond	d/Å	Bond	d/Å
CI(1)-C(3)	1.742(3)	C(7)—C(11)	1.423(3)
N(1)-C(11)	1.302(3)	C(7) - C(8)	1.506(4)
N(1)-C(12)	1.369(3)	C(8)-C(9)	1.509(5)
C(1)-C(2)	1.350(4)	C(9)-C(10)	1.504(5)
C(1)-C(12)	1.416(4)	C(10)-C(11)	1.507(4)
C(2)-C(3)	1.399(4)	C(13)-C(14)	1.388(3)
C(3)-C(4)	1.356(3)	C(13)-C(18)	1.389(3)
C(4)-C(5)	1.407(3)	C(14)-C(15)	1.386(4)
C(5)-C(12)	1.424(3)	C(15)-C(16)	1.371(4)
C(5)-C(6)	1.437(3)	C(16)-C(17)	1.380(4)
C(6)-C(7)	1.359(3)	C(17)-C(18)	1.383(3)
C(6)-C(13)	1.490(3)		

Table 2. Bond angles (ω) in structure 1

Angle	ω/deg	Angle	ω/deg
C(11)-N(1)-C(12)	116.6(2)	C(10)-C(9)-C(8)	109.6(3)
C(2)-C(1)-C(12)	122.1(2)	C(9)-C(10)-C(11)	104.2(2)
C(1)-C(2)-C(3)	118.8(2)	N(1)-C(11)-C(7)	125.1(2)
C(4)-C(3)-C(2)	121.7(2)	N(1)-C(11)-C(10)	125.0(2)
C(4)-C(3)-C(1)	120.1(2)	C(7)-C(11)-C(10)	110.0(2)
C(2)-C(3)-CI(1)	118.2(2)	N(1)-C(12)-C(1)	118.7(2)
C(3)-C(4)-C(5)	120.8(2)	N(1)-C(12)-C(5)	123.0(2)
C(4)-C(5)-C(12)	118.3(2)	C(1)-C(12)-C(5)	118.3(2)
C(4)-C(5)-C(6)	123.5(2)	C(14)-C(13)-C(18)	118.9(2)
C(12)-C(5)-C(6)	118.3(2)	C(14)-C(13)-C(6)	120.7(2)
C(7)-C(6)-C(5)	117.2(2)	C(18)-C(13)-C(6)	120.4(2)
C(7)-C(6)-C(13)	122.3(2)	C(13)-C(14)-C(15)	120.6(2)
C(5)-C(6)-C(13)	120.5(2)	C(16)-C(15)-C(14)	120.0(3)
C(6)-C(7)-C(11)	119.9(2)	C(15)-C(16)-C(17)	120.1(2)
C(6)-C(7)-C(8)	129.7(2)	C(16)-C(17)-C(18)	120.2(2)
C(11)-C(7)-C(8)	110.3(2)	C(17)-C(18)-C(13)	120.2(2)
C(7)-C(8)-C(9)	103.9(3)		

the methylene group in one case and with the aromatic hydrogen atoms in the other) probably causes deformation of the bond angles at the C(6) atom $(C(7)-C(6)-C(13)\ 122.3(2)^{\circ},\ C(5)-C(6)-C(13)\ 120.5(2)^{\circ})$.

The molecules in the crystals are packed at normal van der Waals distances without any specife peculiarities.

Experimental

6-Chloro-2,3-trimethylene-4-phenylquinoline (1) was synthesized by a procedure similar to that described in Ref. 5. A mixture—of—2-amino-5-chlorobenzophenone—(0.46 g, 0.002 mol), cyclopentanone (0.4 g, 0.002 mol), and TPP (0.8 g) was heated in a flow of argon for 4 h at 130 °C. The mixture was then cooled and poured into a mixture of MeOH (4 mL) and triethylamine (1 mL). The crystals of 1 that precipitated were filtered off and purified by crystallization from MeOH to afford 1 in 97 % yield, m.p. 95–96 °C. Found (%): C, 77.20; H, 5.25; N, 4.98. C₁₈H₁₄CIN. Calculated (%): C, 77.27; H, 5.05; N, 5.01.

The crystals of 1 ($C_{18}H_{14}NC1$) are monoclinic. At 20 °C, a=23.750(11), b=9.242(5), c=14.018(7) Å, $\beta=112.68(4)$ °, V=2839(2) Å³, $d_{calc}=1.309$ g cm⁻³, space

Table 3. Selected torsion angles (φ) in structure 1

Angle	φ/deg
C(11)-C(7)-C(8)-C(9)	8.1(4)
C(7)-C(8)-C(9)-C(10)	-13.7(5)
C(8)-C(9)-C(10)-C(11)	13.9(5)
C(8)-C(7)-C(11)-C(10)	0.4(3)
C(9)-C(10)-C(11)-C(7)	-8.7(4)
C(7)-C(6)-C(13)-C(18)	-62.9(3)

Table 4. Coordinates of non-hydrogen ($\times 10^4$) and hydrogen ($\times 10^3$) atoms in structure 1

Atom	x	у	z
CI(1)	-11(1)	3915(1)	1076(1)
N(1)	-2561(1)	5002(2)	517(2)
C(1)	-1801(2)	3601(3)	201(2)
C(2)	-1218(1)	3329(3)	325(2)
C(3)	-762(1)	4300(2)	902(2)
C(4)	-891(1)	5499(2)	1338(2)
C(5)	-1491(1)	5788(2)	1248(2)
C(6)	-1656(1)	7026(2)	1705(2)
C(7)	-2254(1)	7175(2)	1550(2)
C(8)	-2560(1)	8305(4)	1959(3)
C(9)	-3197(2)	7722(5)	1687(4)
C(10)	-3311(1)	6505(4)	924(3)
C(11)	-2687(1)	6130(3)	955(2)
C(12)	-1962(1)	4816(3)	658(2)
C(13)	-1182(1)	8077(2)	2330(2)
C(14)	-705(1)	7639(3)	3226(2)
C(15)	-260(1)	8615(3)	3799(2)
C(16)	-291(1)	10027(3)	3485(2)
C(17)	-763(1)	10479(3)	2597(2)
C(18)	-1207(1)	9510(2)	2018(2)
H(1)	-213(2)	296(4)	-19(3)
H(2)	-113(1)	252(3)	1(2)
H(4)	-58(1)	609(3)	171(2)
H(8A)	-258(2)	918(4)	163(3)
H(8B)	-232(2)	847(4)	272(3)
H(9A)	324(2)	737(5)	231(3)
H(9B)	-349(2)	849(5)	139(3)
H(10A)	-347(2)	567(4)	114(3)
H(10B)	-357(2)	683(4)	20(3)
H(14)	-68(1)	673(4)	347(2)
H(15)	5(1)	826(4)	441(3)
H(16)	0(1)	1070(4)	386(2)
H(17)	-77(1)	1143(3)	240(2)
H(18)	-155(1)	983(3)	139(2)

group C2/c, Z=8. Unit cell parameters and intensities of 3112 independent reflections ($R_{\rm int}=0.03$) were measured on a Siemens P3/PC automatic diffractometer (λ MoK α , graphite monochromator, θ /20-scanning, $2\theta_{\rm max}=56^{\circ}$).

The structure was solved by the direct method using the SHELXTL PLUS program package. Positions of hydrogen atoms were determined from differential maps of electron density.

The refinement against F^2 using the full-matrix least square method in the anisotropic (isotropic for hydrogen atoms) approximation for 2647 reflections was carried out to

 $wR_2 = 0.189$ ($R_1 = 0.047$ for 2019 reflections with $F > 4\sigma(F)$, S = 1.12). The atomic coordinates are given in Table 4.

References

- I. P. N. Prasad and D. J. Williams, Introduction to Non-Linear Optical Effects in Molecules and Polymers, Wiley Interscience,
- 2. A. K. Agrawal and S. A. Jenekhe, Macromolecules, 1993, 26, 895.
- 3. B. A. Reinhardt, TRIP, 1993, 1, 4.

- 4. V. V. Tsukruk, V. N. Bliznuyk, D. M. Visser, and I. I. Ponomarev, ACS Polymer Preprints, 1995, 36, 83.
- 5. I. I. Ponomarev, O. V. Shishkin, S. V. Lindeman, and Yu. A. Volkova, Izv. Akad. Nauk, Ser. Khim., 1994, 1467 [Russ. Chem. Bull., 1994, 43, 1390 (Engl. Transl.)].
- 6. Yu. V. Zefirov and P. M. Zorkii, Usp. Khim., 1989, 58, 713
- [Russ. Chem. Rev., 1989, 58 (Engl. Transl.)].
 7. SHELXTL PLUS. PC Version. A System of Computer Programs for the Determination of Crystal Structure from X-ray Diffraction Data. Rev. 5.03, Siemens Analytical X-Ray Instruments Inc., 1994.

Received January 22, 1996; in revised form February 16, 1996